Preliminary Study on Application and Limitation of Microbially Induced Carbonate Precipitation to Improve Unpaved Road in Lateritic Region

Author:

Kim Sojeong,Kim Yeontae,Lee Suhyung,Do JinungORCID

Abstract

Some road systems are unpaved due to limited governmental finance and fewer maintenance techniques. Such unpaved roads become vulnerable during heavy rainy seasons following restrained accessibility among cities and traffic accidents. Considering the circumstances, innovative and cost–effective approaches are required for unpaved roads. Microbially induced carbonate precipitation (MICP) is an emerging soil improvement technology using microbes to hydrolyze urea generating carbonate ions, and precipitates calcium carbonate in the presence of calcium ion. Induced calcium carbonate bonds soil particles enhancing stiffness and strength when the MICP reaction takes place within the soil system. This study introduces the use of microbes on unpaved road systems consisting of in situ lateritic soils. The MICP technology was implemented to improve soil strength through two approaches: surface spraying and mixing methods. A series of soil testing was performed with varying chemical concentrations to measure precipitation efficiency, strength, and quality for construction material and see the feasibility of the proposed methods. The laboratory test results indicated that the surface spraying method provided improved; however, it was highly affected by the infiltration characteristics of used soils. The mixing method showed promising results even under submerged conditions, but still required improvement. Overall, the proposed idea seems possible to apply to improving unpaved road systems in the lateritic region but requires further research and optimization.

Funder

Gyeongsang National University

Publisher

MDPI AG

Subject

General Materials Science

Reference41 articles.

1. Yearbook of Road Statistics;Korea Ministry of Land, Infrastructure and Transport,2022

2. The Roles and Duties of Ministry of Public Works and Transport, Laos;Laos Ministry of Public Work and Transport,2013

3. Microbial-induced mineralization and cementation of fugitive dust and engineering application

4. Fugitive Dust Suppression in Unpaved Roads: State of the Art Research Review

5. Microbiological precipitation of CaCO3

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3