Performance of Biodegradable Biochar-Added and Bio-Based Plastic Clips for Growing Tomatoes

Author:

Malińska KrystynaORCID,Pudełko Agnieszka,Postawa PrzemysławORCID,Stachowiak Tomasz,Dróżdż DanutaORCID

Abstract

Increasing quantities of waste from using conventional plastic in agriculture and horticulture is one of the most pressing issues nowadays. Conventional plastic accessories (e.g., mulching films, clips, pots, strings, etc.) are typically fossil-derived, non-biodegradable and difficult to recycle after their use. Therefore, there is a need for biodegradable and bio-based alternatives with similar properties to conventional plastics, which can be disposed of through degradation in water, soil or compost under specific conditions. This work investigated the properties and the performance of biodegradable biochar-added and bio-based stem and arch support clips. In addition, the investigated clips were composted with tomato residues during 16 week laboratory composting. The scope of this work included: (1) the production of stem and arch support clips in a pilot installation using injection molding technology, (2) an analysis of their chemical composition, biodegradability, disintegration and phytotoxicity, (3) an evaluation of their performance in the greenhouse cultivation of tomatoes and (4) an evaluation of the composting of the clips with on-farm organic waste as an end-of-waste management method. The stem support clips during industrial composting (58 °C) degraded at 100% after 20 weeks, whereas during home composting (30 °C) the degradation was slow, and after 48 weeks the maximum weight loss was 5.43%. Disintegration during industrial composting resulted in 100% fragmentation into particles with sizes less than 2 mm. Phytotoxicity tests demonstrated that the substrates after industrial and home composting did not have a negative effect on the growth of the test plants (i.e., mustard, wheat, cuckooflower). The biochar-added stem support clips proved to be satisfactory alternatives to conventional non-biodegradable, fossil-derived clips and can be disposed of through composting. However, more work is needed to determine the optimal conditions for composting to ensure rapid degradation of the clips in relevant environments.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3