Affiliation:
1. Research Department, London Interdisciplinary School, London E1 1EW, UK
Abstract
This paper offers a measure of how organised a system is, as defined by self-consistency. Complex dynamics such as tipping points and feedback loops can cause systems with identical initial parameters to vary greatly by their final state. These systems can be called non-ergodic or incoherent. This lack of consistency (or replicability) of a system can be seen to drive an additional form of uncertainty, beyond the variance that is typically considered. However, certain self-organising systems can be shown to have some self-consistency around these tipping points, when compared with systems that find no consistent final states. Here, we propose a measure of this self-consistency that is used to quantify our confidence in the outcomes of agent-based models, simulations or experiments of dynamical systems, which may or may not contain multiple attractors.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献