Wind Effect on External Fire Spread through Openings under the Protection of Horizontal Projections or Vertical Spandrels—A Numerical Study

Author:

Tang Yining12ORCID,Tian Zhaofeng1,Chen Xiao3,Suendermann Brigitta4ORCID,Gamble Grant4ORCID,Huang Zefeng1

Affiliation:

1. School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide 5005, Australia

2. Sotera, Brisbane 4000, Australia

3. WSP, Brisbane 4006, Australia

4. Defence Science and Technology Group (DSTG), Melbourne 3207, Australia

Abstract

A numerical investigation has been conducted to analyse the effect of wind on the vertical spread of fire through a front opening in a building’s external walls. The study utilises a building geometry established from previous experimental work conducted by the National Research Council of Canada (NRCC). A horizontal projection or a vertical spandrel is introduced above the opening of the compartment of fire origin. The purpose of the projection or spandrel is to inhibit the vertical spread of the fire, following the relevant requirements in the Australian National Construction Code (NCC). A computational fluid dynamics (CFD) package for fire-driven fluid flow, namely the Fire Dynamics Simulator (FDS), is employed to simulate the fire behaviour. The FDS model is validated against the NRCC’s experimental results, and a good agreement is achieved. Winds from three horizontal directions (front wind is normal to the opening, side wind is parallel to the opening, and back wind is from behind the building) have been investigated, with speeds ranging up to 10 m/s for each wind direction. Front wind speeds below 1 m/s are found to slightly enhance the vertical spread of the fire, while speeds exceeding 1 m/s are inclined to promote horizontal spread. The impact of side wind on the vertical fire spread was also found to vary with wind speed. The increase in the speed of back wind influences flame buoyancy, resulting in an augmented vertical fire spread. Furthermore, the numerical results reveal that a vertical spandrel of 1100 mm height is less effective in preventing vertical fire spread through openings, compared to a 1100 mm deep horizontal projection. The study suggests that the fire safety design in reducing the hazard of vertical fire spread through openings in buildings’ external walls could be further improved if the effect of wind is considered.

Funder

Australia Research Council (ARC) Industrial Transformation Training Centres

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3