Experimental Studies on the Spraying Pattern of a Swirl Nozzle for Coal Dust Control

Author:

Gao Guijun,Wang ChangjiangORCID,Kou Ziming

Abstract

The experimental and numerical studies were performed to understand the atomization mechanism of pressure spray of a swirl nozzle. The design and performance parameters such as spray cone angle, velocity of particles, spray pressure, and Sauter Mean Diameter (SMD) of the droplets were studied using a laser particle size analyzer and high-speed camera. The results show that the SMD increases at first, then decreases as the spray distance increases, and finally tends to be stable after 1 m. The SMD is largest in the center of the spray field and decreases gradually along the radial direction. The SMD distribution is more concentrated near the nozzle. Increasing spray pressure and deceasing nozzle diameter both can make the SMD distribution more concentrated and uniform. The swirl nozzle has been used in a coal mine and was shown to be very effective in suppressing coal dust compared to other traditional nozzles.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Coal dust control;Russell;Power Eng.,2013

2. New progress on coal mine dust in recent ten years;Li;Procedia Eng.,2011

3. Experimental study on atomization characteristics and dust suppression efficiency of high-pressure spray in underground coal mine;Wang;J. Chin. Coal Soc.,2015

4. Study on dust distribution features of high cutting fully-mechanized coal mining face;Pang;Coal Sci. Technol.,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3