Author:
Yan Wenxu,Sheng Lina,Xu Dezhi,Yang Weilin,Liu Qian
Abstract
To enhance the quality of output power from regional interconnected power grid and strengthen the stability of overall system, a hybrid energy storage system (HESS) is applied to traditional multi-area interconnected power system to improve the performance of load frequency control. A novel topology structure of interconnected power system with the HESS is proposed. Considering the external disturbances of the system and the interconnected factors between each control area, the dynamic mathematical model of each area in the new topology is established in the form of state-space equation. Combining the state feedback robust control theory with linear matrix inequality (LMI) theory, the controller is designed to calculate how much power the HESS should provide to power grid in real time, according to the load change of system. Taking the four-area interconnected power system as study object, the simulation results obtained by MATLAB prove that the application of HESS can well improve the frequency stability of multi-area interconnected system and the H∞ robust controller proposed in this paper is effective.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference35 articles.
1. The influence of large power grid interconnected on power system dynamic stability;Fang;Proc. CSEE,2007
2. Power System Stabilizers Design for Interconnected Power Systems
3. Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system
4. Intelligent optimization algorithm based load frequency controller design and its control performance assessment in interconnected power grids;Zuo;Trans. China Electrotech. Soc.,2018
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献