GARLM: Greedy Autocorrelation Retrieval Levenberg–Marquardt Algorithm for Improving Sparse Phase Retrieval

Author:

Xiao Zhuolei,Zhang Yerong,Zhang Kaixuan,Zhao Dongxu,Gui GuanORCID

Abstract

The goal of phase retrieval is to recover an unknown signal from the random measurements consisting of the magnitude of its Fourier transform. Due to the loss of the phase information, phase retrieval is considered as an ill-posed problem. Conventional greedy algorithms, e.g., greedy spare phase retrieval (GESPAR), were developed to solve this problem by using prior knowledge of the unknown signal. However, due to the defect of the Gauss–Newton method in the local convergence problem, especially when the residual is large, it is very difficult to use this method in GESPAR to efficiently solve the non-convex optimization problem. In order to improve the performance of the greedy algorithm, we propose an improved phase retrieval algorithm, which is called the greedy autocorrelation retrieval Levenberg–Marquardt (GARLM) algorithm. Specifically, the proposed GARLM algorithm is a local search iterative algorithm to recover the sparse signal from its Fourier transform magnitude. The proposed algorithm is preferred to existing greedy methods of phase retrieval, since at each iteration the problem of minimizing the objective function over a given support is solved by using the improved Levenberg–Marquardt (ILM) method and matrix transform. A local search procedure such as the 2-opt method is then invoked to get the optimal estimation. Simulation results are given to show that the proposed algorithm performs better than the conventional GESPAR algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3