Author:
Ahmed Mohamed,Kim Young-Chon
Abstract
Energy trading with electric vehicles provides opportunities to eliminate the high peak demand for electric vehicle charging while providing cost saving and profits for all participants. This work aims to design a framework for local energy trading with electric vehicles in smart parking lots where electric vehicles are able to exchange energy through buying and selling prices. The proposed architecture consists of four layers: the parking energy layer, data acquisition layer, communication network layer, and market layer. Electric vehicles are classified into three different types: seller electric vehicles (SEVs) with an excess of energy in the battery, buyer electric vehicles (BEVs) with lack of energy in the battery, and idle electric vehicles (IEVs). The parking lot control center (PLCC) plays a major role in collecting all available offer/demand information among parked electric vehicles. We propose a market mechanism based on the Knapsack Algorithm (KPA) to maximize the PLCC profit. Two cases are considered: electric vehicles as energy sellers and the PLCC as an energy buyer, and electric vehicles as energy buyers and the PLCC as an energy seller. A realistic parking pattern of a parking lot on a university campus is considered as a case study. Different scenarios are investigated with respect to the number of electric vehicles and amount of energy trading. The proposed market mechanism outperforms the conventional scheme in view of costs and profits.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献