Malware Collusion Attack against SVM: Issues and Countermeasures

Author:

Chen HongyiORCID,Su Jinshu,Qiao Linbo,Xin Qin

Abstract

Android has become the most popular mobile platform, and a hot target for malware developers. At the same time, researchers have come up with numerous ways to deal with malware. Among them, machine learning based methods are quite effective in Android malware detection, the accuracy of which can be as high as 98%. Thus, malware developers have the incentives to develop more advanced malware to evade detection. This paper presents an adversary attack scenario (Collusion Attack) that will compromise current machine learning based malware detection methods, especially Support Vector Machines (SVM). The malware developers can perform this attack easily by splitting malicious payload into two or more apps. Meanwhile, attackers may hide their malicious behavior by using advanced techniques (Evasion Attack), such as obfuscation, etc. According to our simulation, 87.4% of apps can evade Linear SVM by Collusion Attack. When performing Collusion and Evasion Attack simultaneously, the evasion rate can reach 100% at a low cost. Thus, we proposed a method to deal with this issue. This approach, realized in a tool, called ColluDroid, can identify the collusion apps by analyzing the communication between apps. In addition, it can integrate secure learning methods (e.g., Sec-SVM) to fight against Evasion Attack. The evaluation results show that ColluDroid is effective in finding out the collusion apps and ColluDroid-Sec-SVM has the best performance in the presence of both Collusion and Evasion Attack.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Mobile Threat Report - McAfeehttps://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2017.pdf

2. IT threat evolution Q3 2017. Statisticshttps://securelist.com/it-threat-evolution-q3-2017-statistics/83131/

3. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis for Android Apps;Arzt,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3