Targeted Grassland Monitoring at Parcel Level Using Sentinels, Street-Level Images and Field Observations

Author:

d’Andrimont Raphaël,Lemoine Guido,van der Velde Marijn

Abstract

The introduction of high-resolution Sentinels combined with the use of high-quality digital agricultural parcel registration systems is driving the move towards at-parcel agricultural monitoring. The European Union’s Common Agricultural Policy (CAP) has introduced the concept of CAP monitoring to help simplify the management and control of farmers’ parcel declarations for area support measures. This study proposes a proof of concept of this monitoring approach introducing and applying the concept of ‘markers’. Using Sentinel-1- and -2-derived (S1 and S2) markers, we evaluate parcels declared as grassland in the Gelderse Vallei in the Netherlands covering more than 15,000 parcels. The satellite markers—respectively based on crop-type deep learning classification using S1 backscattering and coherence data and on detecting bare soil with S2 during the growing season—aim to identify grassland-declared parcels for which (1) the marker suggests another crop type or (2) which appear to have been ploughed during the year. Subsequently, a field-survey was carried out in October 2017 to target the parcels identified and to build a relevant ground-truth sample of the area. For the latter purpose, we used a high-definition camera mounted on the roof of a car to continuously sample geo-tagged digital imagery, as well as an app-based approach to identify the targeted fields. Depending on which satellite-based marker or combination of markers is used, the number of parcels identified ranged from 2.57% (marked by both the S1 and S2 markers) to 17.12% of the total of 11,773 parcels declared as grassland. After confirming with the ground-truth, parcels flagged by the combined S1 and S2 marker were robustly detected as non-grassland parcels (F-score = 0.9). In addition, the study demonstrated that street-level imagery collection could improve collection efficiency by a factor seven compared to field visits (1411 parcels/day vs. 217 parcels/day) while keeping an overall accuracy of about 90% compared to the ground-truth. This proposed way of collecting in situ data is suitable for the training and validating of high resolution remote sensing approaches for agricultural monitoring. Timely country-wide wall-to-wall parcel-level monitoring and targeted in-season parcel surveying will increase the efficiency and effectiveness of monitoring and implementing agricultural policies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. Assessment of C budget for grasslands and drylands of the world

2. World Resources 2000–2001: People and Ecosystems: The Fraying Web of Life;Rosen,2000

3. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands

4. 2006 IPCC Guidelines for National Greenhouse Gas Inventories,2006

5. Livestock greenhouse gas emissions and mitigation potential in Europe

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3