Formation of Hydrocarbons in the Presence of Native Iron under Upper Mantle Conditions: Experimental Constraints

Author:

Sokol ,Tomilenko ,Sokol ,Zaikin ,Bul’bak

Abstract

The formation of hydrocarbons (HCs) upon interaction of metal and metal–carbon phases (solid Fe, Fe3C, Fe7C3, Ni, and liquid Fe–Ni alloys) with or without additional sources of carbon (graphite, diamond, carbonate, and H2O–CO2 fluids) was investigated in quenching experiments at 6.3 GPa and 1000–1400 °C, wherein hydrogen fugacity (fH2) was controlled by the Fe–FeO + H2O or Mo–MoO2 + H2O equilibria. The aim of the study was to investigate abiotic generation of hydrocarbons and to characterize the diversity of HC species that form in the presence of Fe/Ni metal phases at P–T–fH2 conditions typical of the upper mantle. The carbon donors were not fully depleted at experimental conditions. The ratio of H2 ingress and consumption rates depended on hydrogen permeability of the capsule material: runs with low-permeable Au capsules and/or high hydrogenation rates (H2O–CO2 fluid) yielded fluids equilibrated with the final assemblage of solid phases at fH2sample ≤ fH2buffer. The synthesized quenched fluids contained diverse HC species, predominantly light alkanes. The relative percentages of light alkane species were greater in higher temperature runs. At 1200 °C, light alkanes (C1 ≈ C2 > C3 > C4) formed either by direct hydrogenation of Fe3C or Fe7C3, or by hydrogenation of graphite/diamond in the presence of Fe3C, Fe7C3, and a liquid Fe–Ni alloy. The CH4/C2H6 ratio in the fluids decreased from 5 to 0.5 with decreasing iron activity and the C fraction increased in the series: Fe–Fe3C → Fe3C–Fe7C3 → Fe7C3–graphite → graphite. Fe3C–magnesite and Fe3C–H2O–CO2 systems at 1200 °C yielded magnesiowüstite and wüstite, respectively, and both produced C-enriched carbide Fe7C3 and mainly light alkanes (C1 ≈ C2 > C3 > C4). Thus, reactions of metal phases that simulate the composition of native iron with various carbon donors (graphite, diamond, carbonate, or H2O–CO2 fluid) at the upper mantle P–T conditions and enhanced fH2 can provide abiotic generation of complex hydrocarbon systems that predominantly contain light alkanes. The conditions favorable for HC formation exist in mantle zones, where slab-derived H2O-, CO2- and carbonate-bearing fluids interact with metal-saturated mantle.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3