Characteristics of Organic Matter Particles and Organic Pores of Shale Gas Reservoirs: A Case Study of Longmaxi-Wufeng Shale, Eastern Sichuan Basin

Author:

Wang Guochang,Long Shengxiang,Peng Yongmin,Ju Yiwen

Abstract

Heterogeneity of organic matter (OM), including size, type, and organic pores within OM, is being recognized along with increasing study using SEM images. Especially, the contribution of organic pores to the entire pore system should be better understood to aid in the evaluation of shale reservoirs. This research observed and quantitatively analyzed over 500 SEM images of 19 core samples from Longmaxi-Wufeng Shale in the eastern Sichuan Basin to summarize the features of OM particles and OM-hosted pores and their evolution during burial. The features of organic pores as well as the embedded minerals within OM particles enables to recognize four different type of OM particles. The organic pore features of each type of OM particles were quantitatively described using parameters such as pore size distribution (PSD), pore geometry, and organic porosity. The PSD of weakly or undeformed porous pyrobitumen indicates that the large organic pores (usually 200 nm to 1 um) is less common than small pores but the major contributor to organic porosity. The organic porosity of OM particles covers a large range of 1–35%, indicating a high heterogeneity among OM particles. Based on analysis of 81 OM particles, the average of organic porosity of the five samples were calculated and ranges from 3% to 12%. In addition, samples from well JY1 have higher organic porosity than JY8. These results helped to reveal how significant the organic pores are for shale gas reservoirs. In addition to presenting many examples of OM particles, this research should significantly improve the understanding of type and evolution of OM particles and contribution of OM-hosted pores to the entire pore system of high to over mature shale.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3