Abstract
Radium-bearing barytes (radiobarytes) have been known since the beginning of the 20th century. They are mainly found as precipitates of low-temperature hydrothermal solutions. In anthropogenic environments, they frequently occur as crusts on oil industry equipment used for borehole extraction, in leachates from uranium mill tailings, and as a by-product of phosphoric acid manufacturing. Recently, we recognized Ra-rich baryte as a precipitate in the water drainage system of a bituminous coal mine in the Czech part of the Upper Silesian Basin. The precipitate is a relatively pure baryte, with the empirical formula (Ba0.934Sr0.058Ca0.051Mg0.003)Σ1.046S0.985O4.000. The mean specific activity of 226Ra was investigated by the two-sample method and it equals 39.62(22) Bq/g, a level that exceeds known natural occurrences. The values for 228Ra and 224Ra are 23.39(26) Bq/g and 11.03(25) Bq/g. The radium content in the baryte is 1.071 ng/g. It is clear that the Ra-rich baryte results from the mixing of two different mine waters—brines rich in Ba, Sr, and isotopes 226Ra and 228Ra and waters that are affected by sulfide weathering in mine works. When this mixing occurs in surface watercourses, it could present a serious problem due to the half-life of 226Ra, which is 1600 years. If such mixing spontaneously happens in a mine, then the environmental risks will be much lower and will be, to a great, extent eliminated after the closure of the mine.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference68 articles.
1. Bakerian lecture: The succession of changes in radioactive bodies;Rutherford;Phil. Trans. A,1904
2. Excessive barium and radium-226 in Illinois drinking water;Calabrese;J. Environ. Health.,1977
3. The origin of barium in the Cambrian–Vendian aquifer system, North Estonia; pp. 193–208
4. Radium and Fission Product Radioactivity in Thermal Waters
5. Mineral and thermal waters of Western Bohemia
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献