Does COVID-19 Clinical Status Associate with Outcome Severity? An Unsupervised Machine Learning Approach for Knowledge Extraction

Author:

Karlafti EleniORCID,Anagnostis AthanasiosORCID,Kotzakioulafi EvangeliaORCID,Vittoraki Michaela Chrysanthi,Eufraimidou Ariadni,Kasarjyan Kristine,Eufraimidou Katerina,Dimitriadou Georgia,Kakanis Chrisovalantis,Anthopoulos Michail,Kaiafa Georgia,Savopoulos Christos,Didangelos TriantafyllosORCID

Abstract

Since the beginning of the COVID-19 pandemic, 195 million people have been infected and 4.2 million have died from the disease or its side effects. Physicians, healthcare scientists and medical staff continuously try to deal with overloaded hospital admissions, while in parallel, they try to identify meaningful correlations between the severity of infected patients with their symptoms, comorbidities and biomarkers. Artificial intelligence (AI) and machine learning (ML) have been used recently in many areas related to COVID-19 healthcare. The main goal is to manage effectively the wide variety of issues related to COVID-19 and its consequences. The existing applications of ML to COVID-19 healthcare are based on supervised classifications which require a labeled training dataset, serving as reference point for learning, as well as predefined classes. However, the existing knowledge about COVID-19 and its consequences is still not solid and the points of common agreement among different scientific communities are still unclear. Therefore, this study aimed to follow an unsupervised clustering approach, where prior knowledge is not required (tabula rasa). More specifically, 268 hospitalized patients at the First Propaedeutic Department of Internal Medicine of AHEPA University Hospital of Thessaloniki were assessed in terms of 40 clinical variables (numerical and categorical), leading to a high-dimensionality dataset. Dimensionality reduction was performed by applying a principal component analysis (PCA) on the numerical part of the dataset and a multiple correspondence analysis (MCA) on the categorical part of the dataset. Then, the Bayesian information criterion (BIC) was applied to Gaussian mixture models (GMM) in order to identify the optimal number of clusters under which the best grouping of patients occurs. The proposed methodology identified four clusters of patients with similar clinical characteristics. The analysis revealed a cluster of asymptomatic patients that resulted in death at a rate of 23.8%. This striking result forces us to reconsider the relationship between the severity of COVID-19 clinical symptoms and the patient’s mortality.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3