Abstract
Huntington Disease (HD) is a dominant, lethal neurodegenerative disorder caused by the abnormal expansion (>35 copies) of a CAG triplet located in exon 1 of the HTT gene encoding the huntingtin protein (Htt). Mutated Htt (mHtt) easily aggregates, thereby inducing ER stress that in turn leads to neuronal injury and apoptosis. Therefore, both the inhibition of mHtt aggregate formation and the acceleration of mHtt degradation represent attractive strategies to delay HD progression, and even for HD treatment. Here, we describe the mechanism underlying mHtt degradation by the ubiquitin–proteasome system (UPS), which has been shown to play a more important role than the autophagy–lysosomal pathway. In particular, we focus on E3 ligase proteins involved in the UPS and detail their structure–function relationships. In this framework, we discuss the possible exploitation of PROteolysis TArgeting Chimeras (PROTACs) for HD therapy. PROTACs are heterobifunctional small molecules that comprise two different ligands joined by an appropriate linker; one of the ligands is specific for a selected E3 ubiquitin ligase, the other ligand is able to recruit a target protein of interest, in this case mHtt. As a consequence of PROTAC binding, mHtt and the E3 ubiquitin ligase can be brought to a relative position that allows mHtt to be ubiquitinated and, ultimately, allows a reduction in the amount of mHtt in the cell.
Funder
Ministero dell'Università e della Ricerca
Ministero dell’Istruzione, dell’Università e della Ricerca
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献