Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction

Author:

Baatiah Adel O.1,Eltamaly Ali M.1ORCID,Alotaibi Majed A.2ORCID

Affiliation:

1. Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia

2. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

Efficient energy extraction in photovoltaic (PV) systems relies on the effective implementation of Maximum Power Point Tracking (MPPT) techniques. Conventional MPPT techniques often suffer from slow convergence speeds and suboptimal tracking performance, particularly under dynamic variations of environmental conditions. Smart optimization algorithms (SOA) using metaheuristic optimization algorithms can avoid these limitations inherent in conventional MPPT methods. The problem of slow convergence of the SOA is avoided in this paper using a novel strategy called Swarm Size Reduction (SSR) utilized with a Particle Swarm Optimization (PSO) algorithm, specifically designed to achieve short convergence time (CT) while maintaining exceptional tracking accuracy. The novelty of the proposed MPPT method introduced in this paper is the dynamic reduction of the swarm size of the PSO for improved performance of the MPPT of the PV systems. This adaptive reduction approach allows the algorithm to efficiently explore the solution space of PV systems and rapidly exploit it to identify the global maximum power point (GMPP) even under fast fluctuations of uneven solar irradiance and temperature. This pioneering ultra-fast MPPT method represents a significant advancement in PV system efficiency and promotes the wider adoption of solar energy as a reliable and sustainable power source. The results obtained from this proposed strategy are compared with several optimization algorithms to validate its superiority. This study aimed to use SSR with different swarm sizes and then find the optimum swarm size for the MPPT system to find the lowest CT. The output accentuates the exceptional performance of this innovative method, achieving a time reduction of as much as 75% when compared with the conventional PSO technique, with the optimal swarm size determined to be six.

Funder

Deanship of Scientific Research at King Saud University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3