Benchmarking Electrolytes for the Solid Oxide Electrolyzer Using a Finite Element Model

Author:

Srinivas Sriram1,Dhanushkodi Shankar Raman1ORCID,Chidambaram Ramesh Kumar2ORCID,Skrzyniowska Dorota3ORCID,Korzen Anna3,Taler Jan3ORCID

Affiliation:

1. SERD Innovation Laboratory, Department of Chemical Engineering, Vellore Institute of Technology, Vellore 632014, India

2. Automotive Research Centre, Vellore Institute of Technology, Vellore 632014, India

3. Department of Energy, Cracow University of Technology, 31-864 Cracow, Poland

Abstract

The demand for green hydrogen is increasing, as it is estimated to reduce ten percent of total global green-house-gas emissions from fossil fuel. The solid oxide electrolysis cell (SOEC) is an electrochemical energy-conversion device (EECD) that produces green hydrogen via steam electrolysis. It is preferred to other EECDs for clean hydrogen production owing to its high efficiency, robust kinetics, and lack of precious-metal requirements for cell construction. Herein, we report a Multiphysics model describing the transport phenomena in the SOEC. The governing equations used in the model include a thorough description of the electrode kinetics and of the behavior of the three electrode–electrolyte interfaces in the cell. For the first time, the effect of the scandium-doped zirconia (SCGZ), yttrium-stabilized zirconia (YSZ), and gadolinium-doped ceria (GDC) electrolytes was modeled at different temperatures and pressures. By linking the convection and diffusion equations with the Butler–Volmer at shorter scales, a true representation of the cell operation was simulated. Our models show a R2 value of over 0.996 in predicting the cell-polarization curves and electrochemical properties at the given operating conditions. The impedance of the SCGZ was 0.0240 Ohm.cm2. This value was two- and four-fold lower than the values of the YSZ and GDC, respectively. Furthermore, our theoretical findings of both the polarization data and the impedance were in good agreement with the experimental data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3