Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery

Author:

Gabana Pedro1ORCID,Tinaut Francisco V.2ORCID,Reyes Miriam1ORCID,Domínguez José Ignacio3

Affiliation:

1. Department of Energy and Fluid Mechanics Engineering, University of Valladolid, Paseo del Cauce 59, E-47011 Valladolid, Valladolid, Spain

2. Institute CMT, Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Valencia, Spain

3. CIDAUT Foundation, Plaza Vicente Aleixandre Campos 2, Parque Tecnológico, E-47151 Boecillo, Valladolid, Spain

Abstract

Motivated by the growing importance of fuel cell systems as the basis for distributed energy-generation systems, this work considers a micro-combined heat and power (mCHP) generation system based on a fuel cell integrated to satisfy the (power and thermal) energy demands of a residential application. The main objective of this work is to compare the performance of several CHP configurations with a conventional alternative, in terms of primary energy consumption, greenhouse gas (GHG) emissions and economic viability. For that, a simulation tool has been developed to easily estimate the electrical and thermal energy generated by a hydrogen fuel cell, and all associated results related to the hydrogen production alternatives: excess or shortfall of electrical and thermal energy, CO2 emission factor, overall performance, operating costs, payback period, etc. A feasibility study of different configuration possibilities of the micro-CHP generation system has been carried out considering different heat-to-power ratios (HPRs) in the possible demands, and analyzing primary energy savings, CO2 emissions savings and operating costs. An extensive parametric study has been performed to analyze the effect of the fuel cell’s electric power and number of annual operation hours as parameters. Finally, a study of the influence of the configuration parameters on the final results has been carried out. Results show that, in general, configurations using hydrogen produced from natural gas save more primary energy than configurations with hydrogen production from electricity. Furthermore, it is concluded that the best operating points are those in which the generation system and the demand have similar HPR. It has also been estimated that a reduction in renewable hydrogen price is necessary to make these systems profitable. Finally, it has been determined that the most influential parameters on the results are the fuel cell electrical efficiencies, hydrogen production efficiency and hydrogen cost.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3