Sweet Sorghum as a Potential Fallow Crop in Sugarcane Farming for Biomethane Production in Queensland, Australia

Author:

Mathias Divya Joslin1,Edwiges Thiago12,Ketsub Napong3,Singh Rajinder4,Kaparaju Prasad1

Affiliation:

1. School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia

2. Department of Biological and Environmental Sciences, Federal University of Technology, Medianeira 85884-000, PR, Brazil

3. Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4111, Australia

4. Singh Farming Limited, Cairns, QLD 4865, Australia

Abstract

Biogas from lignocellulosic feedstock is a promising energy source for decentralized renewable electricity, heat, and/or vehicle fuel generation. However, the selection of a suitable energy crop should be based on several factors such as biomass yields and characteristics or biogas yields and economic returns if used in biorefineries. Furthermore, the food-to-fuel conflict for the use of a specific energy crop must be mitigated through smart cropping techniques. In this study, the potential use of sweet sorghum as an energy crop grown during the fallow periods of sugarcane cultivation was evaluated. Nine sweet sorghum cultivars were grown on sandy loam soil during September 2020 in North Queensland, Australia. The overall results showed that the crop maturity had a profound influence on chemical composition and biomass yields. Further, the total insoluble and soluble sugar yields varied among the tested cultivars and were dependent on plant height and chemical composition. The biomass yields ranged from 46.9 to 82.3 tonnes/hectare (t/ha) in terms of the wet weight (w/w) of the tested cultivars, with the SE-81 cultivar registering the highest biomass yield per hectare. The gross energy production was determined based on the chemical composition and methane yields. Biochemical methane potential (BMP) studies in batch experiments at 37 °C showed that methane yields of 175 to 227.91 NmL CH4/gVSadded were obtained from the tested cultivars. The maximum methane yield of 227.91 NmL CH4/gVSadded was obtained for cultivar SE-35. However, SE-81 produced the highest methane yields on a per hectare basis (3059.18 Nm3 CH4/ha). This is equivalent to a gross energy value of 761.74 MWh/year or compressed biomethane (BioCNG) as a vehicle fuel sufficient for 95 passenger cars travelling at 10,000 km per annum. Overall, this study demonstrated that sweet sorghum is a potential energy crop for biogas production that could be cultivated during the fallow period of sugarcane cultivation in Queensland.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3