Simulation and Optimization of Electromagnetic Absorption of Polycarbonate/CNT Composites Using Machine Learning

Author:

Sidi Salah Lakhdar,Chouai MohamedORCID,Danlée YannORCID,Huynen IsabelleORCID,Ouslimani Nassira

Abstract

Electronic devices that transmit, distribute, or utilize electrical energy create electromagnetic interference (EMI) that can lead to malfunctioning and degradation of electronic devices. EMI shielding materials block the unwanted electromagnetic waves from reaching the target material. EMI issues can be solved by using a new family of building blocks constituted of polymer and nanofillers. The electromagnetic absorption index of this material is calculated by measuring the “S-parameters”. In this article, we investigated the use of artificial intelligence (AI) in the EMI shielding field by developing a new system based on a multilayer perceptron neural network designed to predict the electromagnetic absorption of polycarbonate-carbon nanotubes composites films. The proposed system included 15 different multilayer perception (MLP) networks; each network was specialized to predict the absorption value of a specific category sample. The selection of appropriate networks was done automatically, using an independent block. Optimization of the hyper-parameters using hold-out validation was required to ensure the best results. To evaluate the performance of our system, we calculated the similarity error, precision accuracy, and calculation time. The results obtained over our database showed clearly that the system provided a very good result with an average accuracy of 99.7997%, with an overall average calculation time of 0.01295 s. The composite based on polycarbonate−5 wt.% carbon nanotube was found to be the ultimate absorber over microwave range according to Rozanov formalism.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3