Effects of Anisotropy on Single Crystal Silicon in Polishing Non-Continuous Surface

Author:

Wang Guilian,Feng Zhijian,Hu Yahui,Liu Jie,Zheng Qingchun

Abstract

A molecular dynamics model of the diamond abrasive polishing the single crystal silicon is established. Crystal surfaces of the single crystal silicon in the Y-direction are (010), (011), and (111) surfaces, respectively. The effects of crystallographic orientations on polishing the non-continuous single crystal silicon surfaces are discussed from the aspects of surface morphology, displacement, polishing force, and phase transformation. The simulation results show that the Si(010) surface accumulates chips more easily than Si(011) and Si(111) surfaces. Si(010) and Si(011) workpieces are deformed in the entire pore walls on the entry areas of pores, while the Si(111) workpiece is a local large deformation on entry areas of the pores. Comparing the recovery value of the displacement in different workpieces, it can be seen that the elastic deformation of the A side in the Si(011) workpiece is larger than that of the A side in other workpieces. Pores cause the tangential force and normal force to fluctuate. The fluctuation range of the tangential force is small, and the fluctuation range of the normal force is large. Crystallographic orientations mainly affect the position where the tangential force reaches the maximum and minimum values and the magnitude of the decrease in the tangential force near the pores. The position of the normal force reaching the maximum and minimum values near the pores is basically the same, and different crystallographic orientations have no obvious effect on the drop of the normal force, except for a slight fluctuation in the value. The high-pressure phase transformation is the main way to change the crystal structure. The Si(111) surface is the cleavage surface of single crystal silicon, and the total number of main phase transformation atoms on the Si(111) surface is the largest among the three types of workpieces. In addition, the phase transformation in Si(010) and Si(011) workpieces extends to the bottom of pores, and the Si(111) workpiece does not extend to the bottom of pores.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3