Author:
Guo Cuixia,Yang Xiaojie,Shen Zhiyuan,Wu Jian-Ping,Zhong Suyi,He Yonghong,Guan Tian,Chen Fangyi
Abstract
A phase-sensitive fluidic biosensor based on a spectral-domain low-coherence interferometer is presented in this paper. With a fiber optic probe employing the common-path interferometric configuration, subnanometric changes in thickness of the molecular layers can be detected through phase analysis of the acquired interference signal from the sensor surface. Advantages of this biosensor include its picometer-scale thickness sensitivity, 13.9-ms time response, and tolerance to the fluctuation in concentration of the target solution. The capabilities of this biosensor in monitoring specific molecular binding and recognizing specific molecular was successfully demonstrated by using the reactions between the molecules of protein A and IgG. The calculated minimum detectable concentration of IgG is 0.11 µg/mL.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献