Author:
Yakaboylu Gunes,Pillai Rajalekshmi,Sabolsky Katarzyna,Sabolsky Edward
Abstract
Metal silicide-based thermocouples were fabricated by screen printing thick films of the powder compositions onto alumina tapes followed by lamination and sintering processes. The legs of the embedded thermocouples were composed of composite compositions consisting of MoSi2, WSi2, ZrSi2, or TaSi2 with an additional 10 vol % Al2O3 to form a silicide–oxide composite. The structural and high-temperature thermoelectric properties of the composite thermocouples were examined using X-ray diffraction, scanning electron microscopy and a typical hot–cold junction measurement technique. MoSi2-Al2O3 and WSi2-Al2O3 composites exhibited higher intrinsic Seebeck coefficients (22.2–30.0 µV/K) at high-temperature gradients, which were calculated from the thermoelectric data of composite//Pt thermocouples. The composite thermocouples generated a thermoelectric voltage up to 16.0 mV at high-temperature gradients. The MoSi2-Al2O3//TaSi2-Al2O3 thermocouple displayed a better performance at high temperatures. The Seebeck coefficients of composite thermocouples were found to range between 20.9 and 73.0 µV/K at a temperature gradient of 1000 °C. There was a significant difference between the calculated and measured Seebeck coefficients of these thermocouples, which indicated the significant influence of secondary silicide phases (e.g., Mo5Si3, Ta5Si3) and possible local compositional changes on the overall thermoelectric response. The thermoelectric performance, high sensitivity, and cost efficiency of metal silicide–alumina ceramic composite thermocouples showed promise for high-temperature and harsh-environment sensing applications.
Funder
U.S. Department of Energy
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献