Predictive Control in Water Distribution Systems for Leak Reduction and Pressure Management via a Pressure Reducing Valve

Author:

Bermúdez Jose-RobertoORCID,López-Estrada Francisco-RonayORCID,Besançon GildasORCID,Valencia-Palomo GuillermoORCID,Santos-Ruiz IldebertoORCID

Abstract

This work proposes a model predictive control (MPC) strategy for pressure management and leakage reduction in a water distribution system (WDS). Unlike most of the reported models that mainly consider EPANET-based models, the proposed method considers its dynamic representation given by ordinary differential equations. The proposed MPC uses a pressure-reducing valve (PRV) as a control element to regulate the pressure in the WDS to track the demand. The control scheme proposes a strategy to manage the high nonlinearity of the PRV and takes into account the demand profile throughout the day as well as the leaks that occur in the pipeline. The estimates of magnitude and location of the leak are provided by an Extended Kalman Filter from previous work and with the aid of a rule-based set point manager reduces the fluid loss in the event of a leak. Different scenarios are studied to illustrate the effectiveness of the proposed control system, achieving an approximate reduction of up to 5% of water losses, demonstrating robustness in the case of uncertainty in the leak location estimate.

Funder

Tecnologico Nacional de Mexico

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3