Prediction of Casing Collapse Strength Based on Bayesian Neural Network

Author:

Li Dongfeng,Fan Heng,Wang Rui,Yang Shangyu,Zhao Yating,Yan Xiangzhen

Abstract

With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of string ovality, uneven wall thickness, residual stress, and other factors to high anti-collapse casing, the API formula has a big error in predicting the anti-collapse strength of high anti-collapse casing. Therefore, Bayesian regularization artificial neural network (BRANN) is used to predict the external collapse strength of high anti-collapse casing. By collecting full-scale physical data, including initial defect data, geometric size, mechanical parameters, etc., after data preprocessing, the casing collapse strength data set is established for model training and blind measurement. Under the classical three-layer neural network, the Bayesian regularization algorithm is used for training. Through empirical formula and trial and error method, it is determined that when the number of hidden neurons is 12, the model is the best prediction model for high collapse resistance casing. The prediction results of the blind test data imported by the model show that the coincidence rate of BRANN casing collapse strength prediction can reach 96.67%. Through error analysis with API formula prediction results and KT formula prediction results improved by least square fitting, the BRANN-based casing collapse strength prediction has higher accuracy and stability. Compared with the traditional prediction method, this model can be used to predict casing strength under more complicated working conditions, and it has a certain guiding significance.

Funder

the Innovative Talents Promotion Program—Young Scienceand Technology Nova Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. Preliminary study on casing collapse strength under non-uniform load;Han;Drill. Technol.,2001

2. Quantitative failure risk analysis of shale gas well casing deformation based on Bayesian network;Zhang;Pet. Drill. Prod. Technol.,2018

3. Experimental study on the main influencing factors of casing collapse strength;Lou;Pet. Field Mach.,2012

4. Research on the application of Bayesian neural network method in casing loss prediction;Zhang;Prog. Geophys.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3