Research on Micro-Pore Structure and 3D Visual Characterization of Inter-Salt Shale Based on X-CT Imaging Digital Core Technology

Author:

Zhao Jie,Zhang Yizhong,Zhang Maolin,Mao Zheng,Wang Chenchen,Hu Rongrong,Yang Long,Liu Yong

Abstract

Pore structure is the key factor affecting reservoir accumulation and enrichment behavior. Due to the complex mineral components and pore structure of shale oil reservoirs and strong heterogeneity, it is necessary to explore the micro-pore structure characteristics of inter-salt shale. In this study, in order to qualitatively and quantitatively analyze the pore structure of inter-salt shale reservoirs, as well as evaluate the mineral composition and its spatial distribution characteristics, three shale samples from the 10th cyclothem of the Eq3 (Eq34–10 cyclothem) inter-salt shale were selected to acquire 2D and 3D grayscale images by modular automated processing system (MAPS) and X-ray micro-computed tomography (Micro-CT), respectively. The color map of the inlaid characteristics of mineral aggregates was established by Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), and different mineral types in the grayscale image were determined. After that, the digital core technology was used to reconstruct the core in 3D, and the maximum sphere method was used to extract the pore network model, so as to realize the quantification of micron pore throats and the 3D visualization of inter-shale samples. Meanwhile, in order to compare the fractal characteristics of the pores of the samples, the two-dimensional and three-dimensional fractal dimensions of the three cores were calculated by combining the digital core technique with fractal theory. The study yielded several notable results: the pore structure of inter-salt shale reservoirs is complex and multi-scale, and the CT scanning digital core technology can effectively realize 3D visualization of rock microstructure without damage. The pore types of rock samples are mainly intergranular pores, interparticle pores, and dissolved pores, and the minerals are mainly dolomite, calcite, and glauberite. The micron pore throat radius of the rock sample is 0.5–13.9 μm, the distribution of coordination number is mainly in the range of 1–4, and the shape of the pore throat is mainly triangular and square. The pore space of inter-salt shale has suitable fractal characteristics, and the three-dimensional fractal dimension of the three cores is in the range of 2.41–2.49. In sum, this work used digital core technology to study the microscopic pore structure of inter-salt shale oil, establishing a basis for further understanding of the seepage characteristics and exploration and development of shale oil.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project during the 13th Five-Year Plan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference36 articles.

1. Distribution and potential of global oil and gas resources;Pet. Explor. Dev.,2018

2. Global oil depletion: A review of the evidence;Energy Policy,2010

3. Theory, technology and prospects of conventional and unconventional natural gas;Pet. Explor. Dev.,2018

4. Discussion on key issues of shale oil/gas resource assessment;Oil Gas Geol.,2022

5. Assessment of global unconventional oil and gas resources;Pet. Explor. Dev.,2016

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3