An Assessment of the Impacts of Snowmelt Rate and Continuity Shifts on Streamflow Dynamics in Three Alpine Watersheds in the Western U.S.

Author:

Chen Xiaohua,Tang GuopingORCID,Chen Tao,Niu Xiangyu

Abstract

In semiarid to arid regions of the western U.S., river flow availability and variability are highly subject to shifts in snow accumulation and ablation in alpine watersheds. This study aims to examine how shifts in snowmelt rate (SMR) and snow continuity, an indicator of the consistent existence of snow on the ground, affect snow-driven streamflow dynamics in three alpine watersheds in the U.S. Great Basin. To achieve this end, the coupled hydro-ecological simulation system (CHESS) is used to simulate river flow dynamics, and multiple snow metrics are calculated to quantify the variation of SMR and snow continuity, the latter of which is measured by snow persistence (SP), snow residence time (SRT), and snow season length (SSL). Then, a new approach is proposed to partition streamflow into snow-driven and rain-driven streamflow. The statistical analyses indicate that the three alpine watersheds experienced a downward trend in SP, SRT, SSL, and SMR during the study period of 1990–2016 due to regional warming. As a result, the decrease in SMR and the decline in snow continuity shifted the occurrence day of 25% and 50% of the snow-driven cumulative discharge, as well as peak discharge, toward an earlier occurrence. Moreover, the magnitudes of snow-driven annual streamflow, summer baseflow, and peak discharge also decreased due to the declined snow continuity and the reduced SMR. Overall, by using multiple snow and flow metrics, and by partitioning streamflow into snow-driven and rain-driven flow via the newly proposed approach, we found that SMR and snow continuity determine the streamflow hydrographs and magnitudes in the three alpine watersheds. Given that warming can significantly affect snow dynamics in alpine watersheds in semiarid to arid regions, this has important implications for water resource management in the snow-dominated region when facing future climate warming.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3