Financial Technical Indicator and Algorithmic Trading Strategy Based on Machine Learning and Alternative Data

Author:

Frattini AndreaORCID,Bianchini Ilaria,Garzonio Alessio,Mercuri Lorenzo

Abstract

The aim of this paper is to introduce a two-step trading algorithm, named TI-SiSS. In the first step, using some technical analysis indicators and the two NLP-based metrics (namely Sentiment and Popularity) provided by FinScience and based on relevant news spread on social media, we construct a new index, named Trend Indicator. We exploit two well-known supervised machine learning methods for the newly introduced index: Extreme Gradient Boosting and Light Gradient Boosting Machine. The Trend Indicator, computed for each stock in our dataset, is able to distinguish three trend directions (upward/neutral/downward). Combining the Trend Indicator with other technical analysis indexes, we determine automated rules for buy/sell signals. We test our procedure on a dataset composed of 527 stocks belonging to American and European markets adequately discussed in the news.

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference18 articles.

1. Achelis, Steven B. (2001). Technical Analysis from A to Z, McGraw Hill. [1st ed.].

2. Using genetic algorithms to find technical trading rules;Journal of Financial Economics,1999

3. Evaluating multiple classifiers for stock price direction prediction;Expert Systems with Applications,2015

4. A machine learning algorithm for stock picking built on information based outliers;Expert Systems with Applications,2021

5. Twitter mood predicts the stock market;Journal of Computational Science,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3