Adaptive Inertial Sensor-Based Step Length Estimation Model

Author:

Vezočnik MelanijaORCID,Juric Matjaz B.

Abstract

Pedestrian dead reckoning (PDR) using inertial sensors has paved the way for developing several approaches to step length estimation. In particular, emerging step length estimation models are readily available to be utilized on smartphones, yet they are seldom formulated considering the kinematics of the human body during walking in combination with measured step lengths. We present a new step length estimation model based on the acceleration magnitude and step frequency inputs herein. Spatial positions of anatomical landmarks on the human body during walking, tracked by an optical measurement system, were utilized in the derivation process. We evaluated the performance of the proposed model using our publicly available dataset that includes measurements collected for two types of walking modes, i.e., walking on a treadmill and rectangular-shaped test polygon. The proposed model achieved an overall mean absolute error (MAE) of 5.64 cm on the treadmill and an overall mean walked distance error of 4.55% on the test polygon, outperforming all the models selected for the comparison. The proposed model was also least affected by walking speed and is unaffected by smartphone orientation. Due to its promising results and favorable characteristics, it could present an appealing alternative for step length estimation in PDR-based approaches.

Funder

University of Ljubljana—2016 generation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convolutional Neural Network for Estimating Spatiotemporal and Kinematic Gait Parameters using a Single Inertial Sensor*;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3