Abstract
Pyroelectric infrared (PIR) sensors are low-cost, low-power, and highly reliable sensors that have been widely used in smart environments. Indoor localization systems may be wearable or non-wearable, where the latter are also known as device-free localization systems. Since binary PIR sensors detect only the presence of a subject’s motion in their field of view (FOV) without other information about the actual location, information from overlapping FOVs of multiple sensors can be useful for localization. This study introduces the PIRILS (pyroelectric infrared indoor localization system), in which the sensing signal processing algorithms are augmented by deep learning algorithms that are designed based on the operational characteristics of the PIR sensor. Expanding to the detection of multiple targets, the PIRILS develops a quantized scheme that exploits the behavior of an artificial neural network (ANN) model to demonstrate localization performance in tracking multiple targets. To further improve the localization performance, the PIRILS incorporates a data augmentation strategy that enhances the training data diversity of the target’s motion. Experimental results indicate system stability, improved positioning accuracy, and expanded applicability, thus providing an improved indoor multi-target localization framework.
Funder
Ministry of Science and Technology of Taiwan
Ministry of Education (MOE) in Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献