An Interferometric Synthetic Aperture Radar Tropospheric Delay Correction Method Based on a Global Navigation Satellite System and a Backpropagation Neural Network: More Suitable for Areas with Obvious Terrain Changes

Author:

Qiu Liangcai1,Chen Peng12,Yao Yibin34,Chen Hao1,Tang Fucai1,Xiong Mingzhu1

Affiliation:

1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

3. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

4. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China

Abstract

Atmospheric delay correction remains a major challenge for interferometric synthetic aperture radar (InSAR) technology. In this paper, we first reviewed several commonly used methods for tropospheric delay correction in InSAR. Subsequently, considering the large volume and high temporal resolution of global navigation satellite system (GNSS) station measurement data, we proposed a method for spatial prediction of the InSAR tropospheric delay phase based on the backpropagation (BP) neural network and GNSS zenith total delay (ZTD). Using 42 Sentinel-1 interferograms over the Los Angeles area in 2021 as an example, we validated the accuracy of the BP + GNSS method in spatially predicting ZTD and compared the correction effects of BP + GNSS and five other methods on interferograms using the standard deviation (StaD) and structural similarity (SSIM). The results demonstrated that the BP + GNSS method reduced the root-mean-square error (RMSE) in spatial prediction by approximately 95.50% compared to the conventional interpolation method. After correction using the BP + GNSS method, StaD decreased in 92.86% of interferograms, with an average decrease of 52.03%, indicating significantly better correction effects than other methods. The SSIM of the BP + GNSS method was lower in mountainous and high-altitude areas with obvious terrain changes in the east and north, exhibiting excellent and stable correction performance in different seasons, particularly outperforming the GACOS method in autumn and winter. The BP + GNSS method can be employed to generate InSAR tropospheric delay maps with high temporal and spatial resolution, effectively addressing the challenge of removing InSAR tropospheric delay signals in areas with significant terrain variations.

Funder

National Natural Science Foundation of China

State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3