Velocity and Color Estimation Using Event-Based Clustering

Author:

Lesage Xavier12,Tran Rosalie1,Mancini Stéphane1,Fesquet Laurent1ORCID

Affiliation:

1. Univ. Grenoble Alpes, CNRS (National Centre for Scientific Research), Grenoble INP (Institute of Engineering), TIMA (Techniques of Informatics and Microelectronics for Integrated Systems Architecture), F-38000 Grenoble, France

2. Orioma, F-38430 Moirans, France

Abstract

Event-based clustering provides a low-power embedded solution for low-level feature extraction in a scene. The algorithm utilizes the non-uniform sampling capability of event-based image sensors to measure local intensity variations within a scene. Consequently, the clustering algorithm forms similar event groups while simultaneously estimating their attributes. This work proposes taking advantage of additional event information in order to provide new attributes for further processing. We elaborate on the estimation of the object velocity using the mean motion of the cluster. Next, we are examining a novel form of events, which includes intensity measurement of the color at the concerned pixel. These events may be processed to estimate the rough color of a cluster, or the color distribution in a cluster. Lastly, this paper presents some applications that utilize these features. The resulting algorithms are applied and exercised thanks to a custom event-based simulator, which generates videos of outdoor scenes. The velocity estimation methods provide satisfactory results with a trade-off between accuracy and convergence speed. Regarding color estimation, the luminance estimation is challenging in the test cases, while the chrominance is precisely estimated. The estimated quantities are adequate for accurately classifying objects into predefined categories.

Funder

Association Nationale de la Recherche et de la Technologie

French National Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3