Fabrication of Hollow Silica Nanospheres with Ultra-High Acid Density for Efficient Heterogeneous Catalysis

Author:

Zhang Xiaoli,Wei Juan,Zhang XiaomingORCID

Abstract

Hollow silica nanospheres with ultra-high acid density were fabricated successfully via sulfonation of phenyl-functionalized hollow silica nanospheres, which were synthesized through a single micelle (F127 (EO106PO70EO106))-templated method, with phenyltrimethoxysilane and tetramethoxysilane (TMOS) as silane precursors under neutral conditions. The density of sulfonic acid reached as high as 1.97 mmol/g. The characterization results of 31P-NMR using triethylphosphine oxide as a probe molecule suggested that the acid strength of hybrid solid acids could be systematically tuned by tuning the content of sulfonic acid and higher acid density results in stronger acid strength. Attributed to the unique hollow structure and high-acid density, the sulfonic acid-functionalized hollow silica nanospheres exhibited good catalytic performance in the condensation reaction of benzaldehyde with ethylene glycol. Notably, this study found that the catalytic activity was significantly influenced by the acid density and the ultra-high acid loading was beneficial for the activity due to the enhanced acid strength. This novel solid-acid catalyst also showed good recyclability and could be reused for at least 11 runs.

Funder

National Natural Science Foundation of China

Opening Project of Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan

Education Department of Sichuan Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3