Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production

Author:

Lee Sher Ling,Chang Chi-Jung

Abstract

Metal sulfide-based photocatalysts have gained much attention due to their outstanding photocatalytic properties. This review paper discusses recent developments on metal sulfide-based nanomaterials for H2 production, acting as either photocatalysts or cocatalysts, especially in the last decade. Recent progress on key experimental parameters, in-situ characterization methods, and the performance of the metal sulfide photocatalysts are systematically discussed, including the forms of heterogeneous composite photocatalysts, immobilized photocatalysts, and magnetically separable photocatalysts. Some methods have been studied to solve the problem of rapid recombination of photoinduced carriers. The electronic density of photocatalysts can be investigated by in-situ C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra to study the mechanism of the photocatalytic process. The effects of crystal properties, nanostructure, cocatalyst, sacrificial agent, electrically conductive materials, doping, calcination, crystal size, and pH on the performance of composite photocatalysts are presented. Moreover, the facet effect and light trapping (or light harvesting) effect, which can improve the photocatalytic activity, are also discussed.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3