Energy Efficient and Intermittently Variable Ammonia Synthesis over Mesoporous Carbon-Supported Cs-Ru Nanocatalysts

Author:

Nishi MasayasuORCID,Chen Shih-YuanORCID,Takagi Hideyuki

Abstract

The Cs-promoted Ru nanocatalysts supported on mesoporous carbon materials (denoted as Cs-Ru/MPC) and microporous activated carbon materials (denoted as Cs-Ru/AC) were prepared for the sustainable synthesis of ammonia under mild reaction conditions (<500 °C, 1 MPa). Both Ru and Cs species were homogeneously impregnated into the mesostructures of three commercial available mesoporous carbon materials annealed at 1500, 1800 and 2100 °C (termed MPC-15, MPC-18 and MPC-21, respectively), resulting in a series of Cs-Ru/MPC catalysts with Ru loadings of 2.5–10 wt % and a fixed Cs loading of 33 wt %, corresponding to Cs/Ru molar ratios of 2.5–10. However, the Ru and Cs species are larger than the pore mouths of microporous activated carbon (shortly termed AC) and, as a consequence, were mostly aggregated on the outer surface of the Cs-Ru/AC catalysts. The Cs-Ru/MPC catalysts are superior to the Cs-Ru/AC catalyst in catalysing mild ammonia synthesis, especially for the 2.5Cs-10Ru/MPC-18 catalyst with a Ru loading of 10 wt % and a Cs/Ru ratio of 2.5, which exhibited the highest activity across a wide SV range. It also showed an excellent response and stability during cycling tests over a severe temperature jump in a short time, presumably due to the open mesoporous carbon framework and suitable surface concentrations of CsOH and metallic Ru species at the catalytically active sites. This 2.5Cs-10Ru/MPC-18 catalyst with high activity, fast responsibility and good stability has potential application in intermittently variable ammonia synthesis using CO2-free hydrogen derived from electrolysis of water using renewable energy with fast variability.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference56 articles.

1. Paris agreement https://unfccc.int/sites/default/files/english_paris_agreement.pdf

2. Renewable Hydrogen Production:  Performance of an Alkaline Water Electrolyzer Working under Emulated Wind Conditions

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3