Abstract
Carbon footprint is emerging as an effective tool for carbon emission management, especially that from fossil energy consumption. In addition, decoupling analysis is important to keep a high pace of economic growth while reducing carbon emission and its carbon footprint. Taking the Yangtze River Delta (YRD) urban agglomeration in China as a case, this paper examined the changes in carbon footprint and carbon footprint pressure by incorporating land resource limits. On this basis, we further analyzed the decoupling relationships between carbon footprint, carbon footprint pressure and economic growth. The GeoDetector was also employed to detect the spatial heterogeneity of the carbon footprint pressure. The results showed that despite the decrease of carbon emissions from 2011 to 2019 in the YRD, carbon footprint pressure still revealed an increased trend in this period. As to the decoupling relationships between carbon footprint, carbon footprint pressure and economic growth, they were improved in most of the cities in the YRD, changing from expansive coupling to weak decoupling to strong decoupling. However, the descending trend of decoupling elasticity coefficient for carbon footprint pressure is smaller than that of the carbon footprint. This result could be explained by the fact that not only carbon emission but also carbon sequestration (by productive lands including forests and grasslands) pose large impacts on carbon footprint pressure. The findings indicate the necessity not only to reduce carbon emission, but also to protect productive lands to realize low carbon economy.
Funder
the Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献