A Fractal Approach to Urban Boundary Delineation Based on Raster Land Use Maps: A Case of Shanghai, China

Author:

Zhao Chong,Li Yu,Weng Min

Abstract

Given the diverse socioecological consequences of rapid urban sprawl worldwide, the delineation and monitoring of urban boundaries have been widely used by local governments as a planning instrument for promoting sustainable development. This study demonstrates a fractal method to delineate urban boundaries based on raster land use maps. The basic logic is that the number of built-up land clusters and their size at each dilation step follows a power-law function. It is assumed that two spatial subsets with distinct fractal characteristics would be obtained when the deviation between the dilation curve and a straight line reaches the top point. The top point is regarded to be the optimum threshold for classifying the built-up land patches, because the fractality of built-up land would no longer exist beyond the threshold. After that, all the built-up land patches are buffered with the optimum threshold and the rank-size distribution of new clusters can be re-plotted. Instead of artificial judgement, hierarchical agglomerative clustering is utilized to automatically classify the urban and rural clusters. The approach was applied to the case of Shanghai, the most rapidly urbanizing megacity in China, and the dynamic changes of the urban boundaries from 1994 to 2016 were analyzed. On this basis, urban–rural differences were further explored through several fractal or nonfractal indices. The results show that the proposed fractal approach can accurately distinguish the urban boundary without subjective choice of thresholds. Extraordinarily different fractal dimensions, aggregation and density and similar average compactness were further identified between built-up land in urban and rural areas. The dynamic changes in the urban boundary indicated rapid urban sprawl within Shanghai during the study period. In view of the popularization and global availability of raster land use maps, this paper adds fuels to the cutting-edge topic of distinguishing the morphological criteria to universally describe urban boundaries.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3