Comparing Three Machine Learning Techniques for Building Extraction from a Digital Surface Model

Author:

Notarangelo Nicla MariaORCID,Mazzariello Arianna,Albano RaffaeleORCID,Sole AureliaORCID

Abstract

Automatic building extraction from high-resolution remotely sensed data is a major area of interest for an extensive range of fields (e.g., urban planning, environmental risk management) but challenging due to urban morphology complexity. Among the different methods proposed, the approaches based on supervised machine learning (ML) achieve the best results. This paper aims to investigate building footprint extraction using only high-resolution raster digital surface model (DSM) data by comparing the performance of three different popular supervised ML models on a benchmark dataset. The first two methods rely on a histogram of oriented gradients (HOG) feature descriptor and a classical ML (support vector machine (SVM)) or a shallow neural network (extreme learning machine (ELM)) classifier, and the third model is a fully convolutional network (FCN) based on deep learning with transfer learning. Used data were obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and cover the urban areas of Vaihingen an der Enz, Potsdam, and Toronto. The results indicated that performances of models based on shallow ML (feature extraction and classifier training) are affected by the urban context investigated (F1 scores from 0.49 to 0.81), whereas the FCN-based model proved to be the most robust and best-performing method for building extraction from a high-resolution raster DSM (F1 scores from 0.80 to 0.86).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3