A Study on Learning Parameters in Application of Radial Basis Function Neural Network Model to Rotor Blade Design Approximation

Author:

Song Chang-YongORCID

Abstract

Meta-model sre generally applied to approximate multi-objective optimization, reliability analysis, reliability based design optimization, etc., not only in order to improve the efficiencies of numerical calculation and convergence, but also to facilitate the analysis of design sensitivity. The radial basis function neural network (RBFNN) is the meta-model employing hidden layer of radial units and output layer of linear units, and characterized by relatively fast training, generalization and compact type of networks. It is important to minimize some scattered noisy data to approximate the design space to prevent local minima in the gradient based optimization or the reliability analysis using the RBFNN. Since the noisy data must be smoothed out in order for the RBFNN to be applied as the meta-model to any actual structural design problem, the smoothing parameter must be properly determined. This study aims to identify the effect of various learning parameters including the spline smoothing parameter on the RBFNN performance regarding the design approximation. An actual rotor blade design problem was considered to investigate the characteristics of RBFNN approximation with respect to the range of spline smoothing parameter, the number of training data, and the number of hidden layers. In the RBFNN approximation of the rotor blade design, design sensitivity characteristics such as main effects were also evaluated including the performance analysis according to the variation of learning parameters. From the evaluation results of learning parameters in the rotor blade design, it was found that the number of training data had larger influence on the RBFNN meta-model accuracy than the spline smoothing parameter while the number of hidden layers had little effect on the performances of RBFNN meta-model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3