Biosorption of Pb(II) Using Coffee Pulp as a Sustainable Alternative for Wastewater Treatment

Author:

Gómez-Aguilar Dora Luz,Rodríguez-Miranda Juan Pablo,Baracaldo-Guzmán Deisy,Salcedo-Parra Octavio JoséORCID,Esteban-Muñoz Javier Andrés

Abstract

The present research shows the results obtained from the biosorption process of Pb, using coffee pulp as a biosorbent in synthetic waters. To do this, the lignin and cellulose content and the percentage of removal of Pb2+ ions was determined; additionally, the sorption’s optimal variables, such as the optimum pH, the point of zero charge (pHpzc), the kinetics and the adsorption isotherm, were determined. A comparison was made with other by-products derived from coffee crops. According to the results obtained in this research, the cellulose percentage was 29.12 ± 0.22% and the lignin percentage was 19.25 ± 0.16% in the coffee pulp, the optimum pH was 2.0 units and the kinetic model, which adjusted to the biosorption’s process, was the pseudo-second order of Ho and McKay, presenting an isotherm of Langmuir’s model and pHpzc of 3.95 units. Lastly, the removal of the pollutant was 86.45%, with a capacity of maximum adsorption of 24.10 mg·g−1 obtained with a particle size of 180 µm, time of contact of 105 min and at 100 RPM. Finally, we express that (a) the coffee pulp can be used as a sustainable alternative for the removal of the pollutant mentioned in synthetic and/or industrial wastewater matrices, to meet goals 3.9 and 6.9 of the Sustainable Development Goals of the 2030 agenda, and (b) the novelty of this research is the use of an agricultural waste of easy acquisition as a sorbent, without chemical modification, since it presented a high percentage of efficiency in the removal of Pb2+ ions. In turn, the challenge of this research is implementing this green technology on a pilot, semi-industrial and/or industrial scale in wastewater treatment systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3