VBM-Based Alzheimer’s Disease Detection from the Region of Interest of T1 MRI with Supportive Gaussian Smoothing and a Bayesian Regularized Neural Network

Author:

Khagi BijenORCID,Lee Kun HoORCID,Choi Kyu Yeong,Lee Jang Jae,Kwon Goo-RakORCID,Yang Hee-Deok

Abstract

This paper presents an efficient computer-aided diagnosis (CAD) approach for the automatic detection of Alzheimer’s disease in patients’ T1 MRI scans using the voxel-based morphometry (VBM) analysis of the region of interest (ROI) in the brain. The idea is to generate a normal distribution of feature vectors from ROIs then later use for classification via Bayesian regularized neural network (BR-NN). The first dataset consists of the magnetic resonance imaging (MRI) of 74 Alzheimer’s disease (AD), 42 mild cognitive impairment (MCI), and 74 control normal (CN) from the ADNI1 dataset. The other dataset consists of the MRI of 42 Alzheimer’s disease dementia (ADD), 42 normal controls (NCs), and 39 MCI due to AD (mAD) from our GARD2 database. We aim to create a generalized network to distinguish normal individuals (CN/NC) from dementia patients AD/ADD and MCI/mAD. Our performance relies on our feature extraction process and data smoothing process. Here the key process is to generate a Statistical Parametric Mapping (SPM) t-map image from VBM analysis and obtain the region of interest (ROI) that shows the optimistic result after two-sample t-tests for a smaller value of p < 0.001(AD vs. CN). The result was overwhelming for the distinction between AD/ADD and CN/NC, thus validating our idea for discriminative MRI features. Further, we compared our performance with other recent state-of-the-art methods, and it is comparatively better in many cases. We have experimented with two datasets to validate the process. To validate the network generalization, BR-NN is trained from 70% of the ADNI dataset and tested on 30% of the ADNI, 100% of the GARD dataset, and vice versa. Additionally, we identified the brain anatomical ROIs that may be relatively responsible for brain atrophy during the AD diagnosis.

Funder

NRF

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3