Advanced Crystal Plasticity Modeling of Multi-Phase Steels: Work-Hardening, Strain Rate Sensitivity and Formability

Author:

Galán-López JesúsORCID,Shakerifard BehnamORCID,Ochoa-Avendaño JhonORCID,Kestens Leo A. I.ORCID

Abstract

This work presents an advanced crystal plasticity model for the simulation of the mechanical behavior of multiphase advanced high-strength steels. The model is based on the Visco-Plastic Self-Consistent (VPSC) model and uses information about the material’s crystallographic texture and grain morphology together with a grain constitutive law. The law used here, based on the work of Pantleon, considers how dislocations are created and annihilated, as well as how they interact with obstacles such as grain boundaries and inclusions (carbides). Additionally, strain rate sensitivity is implemented using a phenomenological expression derived from literature data that does not require any fitting parameter. The model is applied to the study of two bainitic steels obtained by applying different heat treatments. After fitting the required parameters using tensile experiments in different directions at quasi-static and high strain rates, formability properties are determined using the model for the performance of virtual experiments: uniaxial tests are used to determine r-values and stress levels and biaxial tests are used for the calculation of yield surfaces and forming limit curves.

Funder

Research Fund for Coal and Steel

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3