BIM Environment Based Virtual Desktop Infrastructure (VDI) Resource Optimization System for Small to Medium-Sized Architectural Design Firms

Author:

Lee KyuhyupORCID,Shin Joonghwan,Kwon Soonwook,Cho Chung-Suk,Chung Suwan

Abstract

The recent fourth industrial revolution and the era of post-COVID-19 have ushered in a series of technologies including a 5G network and online systems, such as cloud computing technology. In other industries, extensive studies on cloud platforms utilizing such technologies were conducted. Although the cloud environment has taken on greater importance in the construction sector as well, it was used only for servers, failing to fully reflect the characteristics of the cloud system. In particular, compared to large architectural design firms, it is challenging for small to medium-sized design firms to establish a virtual cloud computing environment, which requires high capital investment. Targeting small to medium-sized architectural design firms in Korea, this study was conducted to introduce the VDI system, one of the cloud computing technologies that was recently used in other industries, to the BIM environment for initial application, operation, and management. Specifically, after an analysis was carried out to see if the VDI system utilized in other industries may resolve the hindrance faced with the BIM environment in the construction industry, the KBimVdi system was created based on an algorithm for estimating server scales by analyzing the VDI system suitable for the BIM work environment. This was followed by a validation of the KBimVdi system based on selected projects carried out by small to medium-sized architectural firms where BIM was used for design work.

Funder

National Research Foundation of Korea

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3