Occluded Pedestrian Detection Techniques by Deformable Attention-Guided Network (DAGN)

Author:

Xie HanORCID,Zheng WenqiORCID,Shin HyunchulORCID

Abstract

Although many deep-learning-based methods have achieved considerable detection performance for pedestrians with high visibility, their overall performances are still far from satisfactory, especially when heavily occluded instances are included. In this research, we have developed a novel pedestrian detector using a deformable attention-guided network (DAGN). Considering that pedestrians may be deformed with occlusions or under diverse poses, we have designed a deformable convolution with an attention module (DCAM) to sample from non-rigid locations, and obtained the attention feature map by aggregating global context information. Furthermore, the loss function was optimized to get accurate detection bounding boxes, by adopting complete-IoU loss for regression, and the distance IoU-NMS was used to refine the predicted boxes. Finally, a preprocessing technique based on tone mapping was applied to cope with the low visibility cases due to poor illumination. Extensive evaluations were conducted on three popular traffic datasets. Our method could decrease the log-average miss rate (MR−2) by 12.44% and 7.8%, respectively, for the heavy occlusion and overall cases, when compared to the published state-of-the-art results of the Caltech pedestrian dataset. Of the CityPersons and EuroCity Persons datasets, our proposed method outperformed the current best results by about 5% in MR−2 for the heavy occlusion cases.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3