Advanced Configuration Parameters of Post Processor Influencing Tensile Testing PLA and Add-Mixtures in Polymer Matrix in the Process of FDM Technology

Author:

Török Jozef,Törökova Monika,Duplakova DarinaORCID,Murcinkova ZuzanaORCID,Duplak Jan,Kascak JakubORCID,Karkova Monika

Abstract

The present paper focuses on the configuration possibilities of post -processor influencing mechanical properties of a given test sample produced by the FDM printer from different materials. The research consists of assessing the composite material configurations through a static tensile test conducted on 80 samples produced. The samples were produced based on ISO 527-2 standard, type 1A, with a horizontal position and a layer height of 0.2 mm. The individual samples consisted of four basic groups of materials—the pure Polylactic acid (PLA) plastic (reference sample), and three composite samples with admixtures—PLA matrix with a copper admixture, PLA matrix with an iron admixture, and PLA matrix with a steel admixture. The static tensile test was conducted at a test speed of 5 mm/min. During the research, reference samples (pure PLA) were assessed in five orientations. Samples made of the PLA composite materials with admixtures were manufactured, tested, and evaluated only in the 0° orientation. The paper concludes by comparing the results of measurement with the original material, free from additives, and with the researched influence of the orientation of the prints on the resulting mechanical properties of shear samples and their surface structure. In the conducted experiments, the lowest tensile strength has been demonstrated in test samples the orbital transitions and the upper surface layers of which were parallel to the infill.

Funder

Agentúra na Podporu Výskumu a Vývoja

Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3