Optimization of Fuzzy Logic Controller Used for a Differential Drive Wheeled Mobile Robot

Author:

Štefek Alexandr,Pham Van ThuanORCID,Krivanek VaclavORCID,Pham Khac Lam

Abstract

The energy-efficient motion control of a mobile robot fueled by batteries is an especially important and difficult problem, which needs to be continually addressed in order to prolong the robot’s independent operation time. Thus, in this article, a full optimization process for a fuzzy logic controller (FLC) is proposed. The optimization process employs a genetic algorithm (GA) to minimize the energy consumption of a differential drive wheeled mobile robot (DDWMR) and still ensure its other performances of the motion control. The earlier approaches mainly focused on energy reduction by planning the shortest path whereas this approach aims to optimize the controller for minimizing acceleration of the robot during point-to-point movement and thus minimize the energy consumption. The proposed optimized controller is based on fuzzy logic systems. At first, an FLC has been designed based on the experiment and as well as an experience to navigate the DDWMR to a known destination by following the given path. Next, a full optimization process by using the GA is operated to automatically generate the best parameters of all membership functions for the FLC. To evaluate its effectiveness, a set of other well-known controllers have been implemented in Google Colab® and Jupyter platforms in Python language to compare them with each other. The simulation results have shown that about 110% reduction of the energy consumption was achieved using the proposed method compared to the best of six alternative controllers. Also, this simulation program has been published as an open-source code for all readers who want to continue in the research.

Funder

University of Defence, the Czech Republic

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3