Baseline Air Monitoring of Fine Particulate Matter and Trace Elements in Ontario’s Far North, Canada

Author:

Su Yushan,Sofowote Uwayemi,Munoz Anthony,Noble Michael,Charron Chris,Todd AaronORCID,Celo ValbonaORCID,Dabek-Zlotorzynska Ewa,Kryukova Alla,Switzer Teresa

Abstract

Large mineral deposits have been discovered in Ontario’s Far North and are being considered for further development. Particulate matter and trace elements can be emitted from potential mining activities and these air pollutants are associated with health risks and harmful to the sensitive ecosystem. An air monitoring station, powered by solar panels and a wind turbine, was established in this near-pristine area to monitor baseline levels of fine particulate matter (PM2.5) and trace elements downwind of a proposed mine site. Levels of PM2.5 and trace elements observed from 2015 to 2018 were much lower than measurements observed in southern Ontario, suggesting minimal influence of primary emissions in the study area. One episodic PM2.5 event in July 2015 was attributable to wildfire emissions in northern Ontario. Only 8 out of the 31 target elements were detected in 25% or more of the samples. Good correlations among As, Se, Pb, and Sb, between Mn and Fe, as well as between Ce and La indicated they originated from long-range atmospheric transport from the south. Ontario’s Ambient Air Quality Criteria were not exceeded for any target air pollutants. Four years of air measurements filled the data gap of baseline information in this near-pristine study area and can be used to assess impacts of potential mining activities in the future. Field operations during this study period indicated that the battery-powered air instruments and meteorological sensors worked well in the harsh environment of Ontario’s Far North even in cold winter months. The field experiences gained in this study can be applied to future air monitoring activities in harsh environments where no direct power supply is available and site access is limited.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3