Abstract
The use of dental implants has grown over the years and has led to higher success rates. To further enhance surgical outcomes, many research groups and companies have shifted their focus to surfaces roughness, wettability and chemistry. In a recent study a new dry salt bioactivate surface has been described from a chemical and physical point of view. The aim of this study is to evaluate the osteogenic response of pre-osteoblast cell lines to dry bioactivated surface. MC3T3-E1 osteogenic cell lines were cultured on SM (sandblasted and dual acid-etched surface) and HNS (SM surface with dry salts bioactive technology). Cell adhesion assay, proliferation assay and cell morphology were performed. Osteogenic activity was performed using Alizarin Red S and alkaline phosphatase. The results showed that SM surface determines a slighter but significant increase in cell adhesion and proliferation in a shorter time compared to HNS. On the contrary, HNS surface has long and intertwining filopodia that could be a response to surface HNS-topography that results in a higher stage of differentiation. The nature of the HNS surface is more prone to determine massive deposition of calcium minerals. This study is the first investigating the role of this interesting dry-salts bioactive surface during the first phase of healing and its potential biochemical advantage could be validated by future animal studies with the aim of evaluate the rate of bone implant contact in the early stages of healing.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献