Human–Computer Interaction Based on Scan-to-BIM Models, Digital Photogrammetry, Visual Programming Language and eXtended Reality (XR)

Author:

Banfi FabrizioORCID,Previtali MattiaORCID

Abstract

In recent years, the advent of the latest-generation technologies and methods have made it possible to survey, digitise and represent complex scenarios such as archaeological sites and historic buildings. Thanks to computer languages based on Visual Programming Language (VPL) and advanced real-time 3D creation platform, this study shows the results obtained in eXtended Reality (XR) oriented to archaeological sites and heritage buildings. In particular, the scan-to-BIM process, digital photogrammetry (terrestrial and aerial) were oriented towards a digitisation process able to tell and share tangible and intangible values through the latest generation techniques, methods and devices. The paradigm of the geometric complexity of the built heritage and new levels of interactivity between users and digital worlds were investigated and developed to favour the transmissibility of information at different levels of virtual experience and digital sharing with the aim to archive, tell and implement historical and cultural baggage that over the years risks being lost and not told to future generations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internet of everything meets the metaverse: Bridging physical and virtual worlds with blockchain;Computer Science Review;2024-11

2. Virtual Collaboration Evolution;Advances in Human Resources Management and Organizational Development;2024-09-13

3. A multisensory Interaction Framework for Human-Cyber–Physical System based on Graph Convolutional Networks;Advanced Engineering Informatics;2024-08

4. The Utilization of Unmanned Aerial Vehicles (UAVs) in Cultural Heritage Buildings: A Systematic Literature Review;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-07-04

5. Real-time map rendering and interaction: a stylized hierarchical symbol model;International Journal of Digital Earth;2024-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3