Real-Time AI-Based Informational Decision-Making Support System Utilizing Dynamic Text Sources

Author:

Islam AzharulORCID,Chang KyungHiORCID

Abstract

Unstructured data from the internet constitute large sources of information, which need to be formatted in a user-friendly way. This research develops a model that classifies unstructured data from data mining into labeled data, and builds an informational and decision-making support system (DMSS). We often have assortments of information collected by mining data from various sources, where the key challenge is to extract valuable information. We observe substantial classification accuracy enhancement for our datasets with both machine learning and deep learning algorithms. The highest classification accuracy (99% in training, 96% in testing) was achieved from a Covid corpus which is processed by using a long short-term memory (LSTM). Furthermore, we conducted tests on large datasets relevant to the Disaster corpus, with an LSTM classification accuracy of 98%. In addition, random forest (RF), a machine learning algorithm, provides a reasonable 84% accuracy. This research’s main objective is to increase the application’s robustness by integrating intelligence into the developed DMSS, which provides insight into the user’s intent, despite dealing with a noisy dataset. Our designed model selects the random forest and stochastic gradient descent (SGD) algorithms’ F1 score, where the RF method outperforms by improving accuracy by 2% (to 83% from 81%) compared with a conventional method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Decision Support Systems in Industry 4.0, A Review;Journal of Economy and Technology;2024-08

2. Thread Detection and Response Generation Using Transformers with Prompt Optimisation;2024 International Conference on Signal Processing and Communications (SPCOM);2024-07-01

3. Analysis of Internet Movie Database with Global Vectors for a Word Representation;Vietnam Journal of Computer Science;2023-12-22

4. Machine Learning-Based Crashworthiness Optimization of Crash Box Geometry by Adding Corner Shape Reinforcement Variations;2023 17th International Conference on Telecommunication Systems, Services, and Applications (TSSA);2023-10-12

5. Machine learning-based crashworthiness optimization for the square cone energy-absorbing structure of the subway vehicle;Structural and Multidisciplinary Optimization;2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3